Summary of the Distribution Function Method

Let U be a function of the random variables Y_1, Y_2, \ldots, Y_n .

- 1. Find the region U = u in the $(y_1, y_2, ..., y_n)$ space.
 - 2. Find the region $U \leq u$.
 - 3. Find $F_U(u) = P(U \le u)$ by integrating $f(y_1, y_2, ..., y_n)$ over the region $U \leq u$.
 - 4. Find the density function $f_U(u)$ by differentiating $F_U(u)$. Thus, $f_U(u) = dF_U(u)/du$.

method of transformation

Let Y have probability density function $f_Y(y)$. If h(y) is either increasing or decreasing for all y such that $f_Y(y) > 0$, then U = h(Y) has density function $f_U(u) = f_Y[h^{-1}(u)] \left| \frac{dh^{-1}}{du} \right|, \quad \text{where} \quad \frac{dh^{-1}}{du} = \frac{d[h^{-1}(u)]}{du}.$

Summary of the Transformation Method

- Let U = h(Y), where h(y) is either an increasing or decreasing function of y
- for all y such that $f_Y(y) > 0$.
 - 1. Find the inverse function, $y = h^{-1}(u)$.
 - 2. Evaluate $\frac{dh^{-1}}{du} = \frac{d[h^{-1}(u)]}{du}.$
 - 3. Find $f_U(u)$ by
- THEOREM 6.1

Let $m_X(t)$ and $m_Y(t)$ denote the moment-generating functions of random variables X and Y, respectively. If both moment-generating functions exist and $m_X(t) = m_Y(t)$ for all values of t, then X and Y have the same probability distribution.

 $f_U(u) = f_Y[h^{-1}(u)] \left| \frac{dh^{-1}}{du} \right|.$

THEOREM 6.2 Let Y_1, Y_2, \ldots, Y_n be independent random variables with momentgenerating functions $m_{Y_1}(t), m_{Y_2}(t), \ldots, m_{Y_n}(t)$, respectively. If $U = Y_1 +$

$$Y_2 + \cdots + Y_n$$
, then $m_{U}(t) = m_{Y_1}(t) \times m_{Y_2}(t) \times \cdots \times m_{Y_n}(t)$.

 $m_U(t) = m_{Y_1}(t) \times m_{Y_2}(t) \times \cdots \times m_{Y_n}(t).$ THEOREM 6.3

 $V(U) = \sum_{i=1}^{n} a_i^2 \sigma_i^2 = a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + \cdots + a_n^2 \sigma_n^2.$

Let Y_1, Y_2, \ldots, Y_n be independent normally distributed random variables with $E(Y_i) = \mu_i$ and $V(Y_i) = \sigma_i^2$, for i = 1, 2, ..., n, and let $a_1, a_2, ..., a_n$ be

constants. If

 $U = \sum_{i=1}^{n} a_i Y_i = a_1 Y_1 + a_2 Y_2 + \cdots + a_n Y_n,$

then U is a normally distributed random variable with

 $E(U) = \sum_{i=1}^{n} a_i \mu_i = a_1 \mu_1 + a_2 \mu_2 + \cdots + a_n \mu_n$ and

THEOREM 6.4

Let Y_1, Y_2, \ldots, Y_n be defined as in Theorem 6.3 and define Z_i by

$$Z_i = \frac{Y_i - \mu_i}{n}, \quad i = 1, 2, \ldots, n.$$

 $Z_i=\frac{Y_i-\mu_i}{\sigma_i},\quad i=1,2,\dots,n.$ Then $\sum_{i=1}^n Z_i^2$ has a χ^2 distribution with n degrees of freedom.

Summary of the Moment-Generating Function Method

Let U be a function of the random variables Y_1, Y_2, \ldots, Y_n .

- 1. Find the moment-generating function for $U, m_U(t)$.
- 2. Compare $m_U(t)$ with other well-known moment-generating functions. If $m_U(t) = m_V(t)$ for all values of t, Theorem 6.1 implies that U and V have identical distributions.

The Bivariate Transformation Method

Suppose that Y_1 and Y_2 are continuous random variables with joint density function $f_{Y_1,Y_2}(y_1, y_2)$ and that for all (y_1, y_2) , such that $f_{Y_1,Y_2}(y_1, y_2) > 0$,

function
$$f_{Y_1,Y_2}(y_1, y_2)$$
 and that for all (y_1, y_2) , such that f_1
 $u_1 = h_1(y_1, y_2)$ and $u_2 = h_2(y_1, y_2)$

is a one-to-one transformation from (y_1, y_2) to (u_1, u_2) with inverse $y_1 = h_1^{-1}(u_1, u_2)$ and $y_2 = h_2^{-1}(u_1, u_2)$.

If $h_1^{-1}(u_1, u_2)$ and $h_2^{-1}(u_1, u_2)$ have continuous partial derivatives with respect

 $J = \det \begin{bmatrix} \frac{\partial h_1^{-1}}{\partial u_1} & \frac{\partial h_1^{-1}}{\partial u_2} \\ \frac{\partial h_2^{-1}}{\partial u_2} & \frac{\partial h_2^{-1}}{\partial u_2} \end{bmatrix} = \frac{\partial h_1^{-1}}{\partial u_1} \frac{\partial h_2^{-1}}{\partial u_2} - \frac{\partial h_2^{-1}}{\partial u_1} \frac{\partial h_1^{-1}}{\partial u_2} \neq 0,$

$$\begin{bmatrix} \overline{\partial u_1} & \overline{\partial u_2} \end{bmatrix}$$
 then the joint density of U_1 and U_2 is

to u_1 and u_2 and Jacobia

 $f_{U_1,U_2}(u_1,u_2) = f_{Y_1,Y_2}(h_1^{-1}(u_1,u_2),h_2^{-1}(u_1,u_2))|J|,$

where |J| is the absolute value of the Jacobian.

THEOREM 6.5

Let Y_1, \ldots, Y_n be independent identically distributed continuous random variables with common distribution function F(y) and common density function f(y). If $Y_{(k)}$ denotes the kth-order statistic, then the density function of $Y_{(k)}$ is

given by
$$g_{(k)}(y_k) = \frac{n!}{(k-1)! (n-k)!} [F(y_k)]^{k-1} [1-F(y_k)]^{n-k} f(y_k),$$

If j and k are two integers such that $1 \le j < k \le n$, the joint density of $Y_{(j)}$ and $Y_{(k)}$ is given by

$$g_{(j)(k)}(y_j, y_k) = \frac{n!}{(j-1)! (k-1-j)! (n-k)!} [F(y_j)]^{j-1} \times [F(y_k) - F(y_j)]^{k-1-j} \times [1 - F(y_k)]^{n-k} f(y_j) f(y_k),$$

$$-\infty < y_j < y_k < \infty.$$

THEOREM 7.1

Let Y_1, Y_2, \ldots, Y_n be a random sample of size n from a normal distribution with mean μ and variance σ^2 . Then

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

is normally distributed with mean $\mu_{\overline{Y}} = \mu$ and variance $\sigma_{\overline{Y}}^2 = \sigma^2/n$.

THEOREM 7.2

Let Y_1, Y_2, \ldots, Y_n be defined as in Theorem 7.1. Then $Z_i = (Y_i - \mu)/\sigma$ are independent, standard normal random variables, $i = 1, 2, \ldots, n$, and

$$\sum_{i=1}^n Z_i^2 = \sum_{i=1}^n \left(\frac{Y_i - \mu}{\sigma}\right)^2$$

has a χ^2 distribution with n degrees of freedom (df).

THEOREM 7.3

Let Y_1, Y_2, \ldots, Y_n be a random sample from a normal distribution with mean μ and variance σ^2 . Then

$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \overline{Y})^2$$

has a χ^2 distribution with (n-1) df. Also, \overline{Y} and S^2 are independent random variables.

DEFINITION 7.2

Let Z be a standard normal random variable and let W be a χ^2 -distributed variable with ν df. Then, if Z and W are independent,

$$T = \frac{Z}{\sqrt{W/\nu}}$$

is said to have a t distribution with v df.

THEOREM 7.4

Central Limit Theorem: Let Y_1, Y_2, \ldots, Y_n be independent and identically distributed random variables with $E(Y_i) = \mu$ and $V(Y_i) = \sigma^2 < \infty$. Define

$$U_n = \frac{\sum_{i=1}^n Y_i - n\mu}{\sigma\sqrt{n}} = \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}} \quad \text{where } \overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i.$$

Then the distribution function of U_n converges to the standard normal distribution function as $n \to \infty$. That is,

$$\lim_{n\to\infty} P(U_n \le u) = \int_{-\infty}^u \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad \text{for all } u.$$

DEFINITION 8.2

Let $\hat{\theta}$ be a point estimator for a parameter θ . Then $\hat{\theta}$ is an unbiased estimator if $E(\hat{\theta}) = \theta$. If $E(\hat{\theta}) \neq \theta$, $\hat{\theta}$ is said to be biased.

DEFINITION 8.3

The bias of a point estimator $\hat{\theta}$ is given by $B(\hat{\theta}) = E(\hat{\theta}) - \theta$.

DEFINITION 8.4

The mean square error of a point estimator $\hat{\theta}$ is

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2].$$

DEFINITION 8.5

Parameter

The error of estimation ε is the distance between an estimator and its target parameter. That is, $\varepsilon = |\hat{\theta} - \theta|$.

Summary of Small-Sample Confidence Intervals for Means of Normal Distributions with Unknown Variance(s)

Confidence Interval (v = df)

$$\mu$$
 $\overline{Y} \pm t_{\alpha/2} \left(\frac{S}{\sqrt{n}} \right), \quad \nu = n-1.$ $\mu_1 - \mu_2$ $(\overline{Y}_1 - \overline{Y}_2) \pm t_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}},$ where $\nu = n_1 + n_2 - 2$ and

 $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$ (requires that the samples are independent and the assumption that $\sigma_1^2 = \sigma_2^2$).

A 100(1 –
$$\alpha$$
)% Confidence Interval for σ^2

$$\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{1-(\alpha/2)}^2}\right)$$

DEFINITION 9.1

Given two unbiased estimators $\hat{\theta}_1$ and $\hat{\theta}_2$ of a parameter θ , with variances $V(\hat{\theta}_1)$ and $V(\hat{\theta}_2)$, respectively, then the efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_2$, denoted eff $(\hat{\theta}_1, \hat{\theta}_2)$, is defined to be the ratio

eff
$$(\hat{\theta}_1, \ \hat{\theta}_2) = \frac{V(\hat{\theta}_2)}{V(\hat{\theta}_1)}$$
.

DEFINITION 9.2

The estimator $\hat{\theta}_n$ is said to be a *consistent estimator* of θ if, for any positive number ε ,

$$\lim_{n\to\infty}P(|\hat{\theta}_n-\theta|\leq\varepsilon)=1$$

or, equivalently,
$$\lim_{n\to\infty}P(|\hat{\theta}_n-\theta|>\varepsilon)=0.$$

THEOREM 9.1

An unbiased estimator $\hat{\theta}_n$ for θ is a consistent estimator of θ if $\lim_{n\to\infty}V(\hat{\theta}_n)=0.$

An estimator $\hat{\theta}_n$ for θ is a consistent estimator of θ if

$$\lim_{n\to\infty}(V(\hat{\theta}_n)+B(\hat{\theta}))=0.$$

THEOREM 9.2

Suppose that $\hat{\theta}_n$ converges in probability to θ and that $\hat{\theta}'_n$ converges in probability to θ' .

- a $\hat{\theta}_n + \hat{\theta}'_n$ converges in probability to $\theta + \theta'$. **b** $\hat{\theta}_n \times \hat{\theta}'_n$ converges in probability to $\theta \times \theta'$.

c If $\theta' \neq 0$, $\hat{\theta}_n/\hat{\theta}_n'$ converges in probability to θ/θ' . **d** If $g(\cdot)$ is a real-valued function that is continuous at θ , then $g(\hat{\theta}_n)$ converges in

THEOREM 9.3

probability to $g(\theta)$.

Suppose that U_n has a distribution function that converges to a standard normal distribution function as $n \to \infty$. If W_n converges in probability to 1, then the distribution function of U_n/W_n converges to a standard normal distribution function.

DEFINITION 9.3

Let Y_1, Y_2, \ldots, Y_n denote a random sample from a probability distribution with unknown parameter θ . Then the statistic $U = g(Y_1, Y_2, ..., Y_n)$ is said to be sufficient for θ if the conditional distribution of Y_1, Y_2, \ldots, Y_n , given U, does not depend on θ .

DEFINITION 9.4

Let y_1, y_2, \ldots, y_n be sample observations taken on corresponding random variables Y_1, Y_2, \ldots, Y_n whose distribution depends on a parameter θ . Then, if Y_1, Y_2, \ldots, Y_n are discrete random variables, the *likelihood of the sample*, $L(y_1, y_2, \ldots, y_n | \theta)$, is defined to be the joint probability of y_1, y_2, \ldots, y_n . If Y_1, Y_2, \ldots, Y_n are continuous random variables, the likelihood $L(y_1, y_2, \ldots, y_n | \theta)$ is defined to be the joint density evaluated at y_1, y_2, \ldots, y_n .

THEOREM 9.4

Let U be a statistic based on the random sample Y_1, Y_2, \ldots, Y_n . Then U is a sufficient statistic for the estimation of a parameter θ if and only if the likelihood $L(\theta) = L(y_1, y_2, \ldots, y_n | \theta)$ can be factored into two nonnegative functions,

$$L(y_1, y_2, ..., y_n | \theta) = g(u, \theta) \times h(y_1, y_2, ..., y_n)$$

where $g(u, \theta)$ is a function only of u and θ and $h(y_1, y_2, \ldots, y_n)$ is not a function of θ .

THEOREM 9.4a

Let U be a statistic based on the random sample Y_1, Y_2, \ldots, Y_n . Then U is a jointly sufficient statistic for the estimation of a parameters θ_1 and θ_2 if and only if the likelihood $L(\theta_1, \theta_2) = L(y_1, y_2, \ldots, y_n | \theta_1, \theta_2)$ be factored into two nonnegative functions,

$$L(y_1, y_2, ..., y_n | \theta_1, \theta_2) = g(u_1, u_2, \theta_1, \theta_2) \times h(y_1, y_2, ..., y_n)$$

where $g(u_1, u_2, \theta_1, \theta_2)$ is a function only of $u_1, u_2, \theta_1, \theta_2$ and $h(y_1, y_2, \dots, y_n)$ is not a function of θ_1 and θ_2 .

THEOREM 9.5

The Rao-Blackwell Theorem Let $\hat{\theta}$ be an unbiased estimator for θ such that $V(\hat{\theta}) < \infty$. If U is a sufficient statistic for θ , define $\hat{\theta}^* = E(\hat{\theta} \mid U)$. Then, for all θ ,

$$E(\hat{\theta}^*) = \theta$$
 and $V(\hat{\theta}^*) \le V(\hat{\theta})$.

Method of Moments

Choose as estimates those values of the parameters that are solutions of the equations $\mu'_k = m'_k$, for k = 1, 2, ..., t, where t is the number of parameters to be estimated.

Method of Maximum Likelihood

Suppose that the likelihood function depends on k parameters $\theta_1, \theta_2, \ldots, \theta_k$. Choose as estimates those values of the parameters that maximize the likelihood $L(y_1, y_2, \ldots, y_n | \theta_1, \theta_2, \ldots, \theta_k)$.

The Elements of a Statistical Test

- 1. Null hypothesis, H_0
- 2. Alternative hypothesis, H_a
- 3. Test statistic
- 4. Rejection region

DEFINITION 10.1

A type I error is made if H_0 is rejected when H_0 is true. The probability of a type I error is denoted by α . The value of α is called the level of the test.

A type II error is made if H_0 is accepted when H_a is true. The probability of a type II error is denoted by β .

Large-Sample α -Level Hypothesis Tests

$$\begin{split} H_0: \theta &= \theta_0. \\ H_a: \begin{cases} \theta > \theta_0 & \text{(upper-tail alternative).} \\ \theta < \theta_0 & \text{(lower-tail alternative).} \\ \theta \neq \theta_0 & \text{(two-tailed alternative).} \end{cases} \end{split}$$
 Test statistic: $Z = \frac{\hat{\theta} - \theta_0}{\sigma_{\hat{\theta}}}.$ Rejection region:
$$\begin{cases} \{z > z_{\alpha}\} & \text{(upper-tail RR).} \\ \{z < -z_{\alpha}\} & \text{(lower-tail RR).} \\ \{|z| > z_{\alpha/2}\} & \text{(two-tailed RR).} \end{cases}$$

Sample Size for an Upper-Tail α -Level Test

$$n=\frac{(z_{\alpha}+z_{\beta})^2\sigma^2}{(\mu_a-\mu_0)^2}$$

DEFINITION 10.2

If W is a test statistic, the p-value, or attained significance level, is the smallest level of significance α for which the observed data indicate that the null hypothesis should be rejected.

A Small-Sample Test for μ

Assumptions: Y_1, Y_2, \ldots, Y_n constitute a random sample from a normal distribution with $E(Y_i) = \mu$.

$$H_0: \mu = \mu_0.$$

$$H_a$$
: $\left\{ egin{aligned} \mu > \mu_0 & & ext{(upper-tail alternative)}. \\ \mu < \mu_0 & & ext{(lower-tail alternative)}. \\ \mu
eq \mu_0 & & ext{(two-tailed alternative)}. \end{aligned}
ight.$

$$H_a: \begin{cases} \mu > \mu_0 & \text{(upper-tail alternative).} \\ \mu < \mu_0 & \text{(lower-tail alternative).} \\ \mu \neq \mu_0 & \text{(two-tailed alternative).} \end{cases}$$

$$\text{Test statistic: } T = \frac{\overline{Y} - \mu_0}{S/\sqrt{n}}.$$

$$\text{Rejection region: } \begin{cases} t > t_{\alpha} & \text{(upper-tail RR).} \\ t < -t_{\alpha} & \text{(lower-tail RR).} \end{cases}$$

 $|t| > t_{\alpha/2}$ (two-tailed RR). (See Table 5, Appendix 3, for values of t_{α} , with $\nu = n - 1$ df.)

Small-Sample Tests for Comparing Two Population Means

Assumptions: Independent samples from normal distributions with $\sigma_1^2 = \sigma_2^2$.

$$H_0: \mu_1 - \mu_2 = D_0.$$

$$(\mu_1 - \mu_2 > D_0)$$
 (upper-tail alternative)

$$H_a$$
:
$$\begin{cases} \mu_1 - \mu_2 > D_0 & \text{(upper-tail alternative).} \\ \mu_1 - \mu_2 < D_0 & \text{(lower-tail alternative).} \\ \mu_1 - \mu_2 \neq D_0 & \text{(two-tailed alternative).} \end{cases}$$

(
$$\mu_1 - \mu_2 \neq D_0$$
 (two-tailed alternative).

Test statistic:
$$T = \frac{\overline{Y}_1 - \overline{Y}_2 - D_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
, where $S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$.

Rejection region:
$$\begin{cases} t > t_{\alpha} & \text{(upper-tail RR).} \\ t < -t_{\alpha} & \text{(lower-tail RR).} \\ |t| > t_{\alpha/2} & \text{(two-tailed RR).} \end{cases}$$

Rejection region:
$$\begin{cases} t > t_{\alpha} & \text{(upper-tail RR).} \\ t < -t_{\alpha} & \text{(lower-tail RR).} \\ |t| > t_{\alpha/2} & \text{(two-tailed RR).} \end{cases}$$

Here,
$$P(T > t_{\alpha}) = \alpha$$
 and degrees of freedom $\nu = n_1 + n_2 - 2$. (See Table 5, Appendix 3.)

Test of Hypotheses Concerning a Population Variance

Assumptions: Y_1, Y_2, \ldots, Y_n constitute a random sample from a normal distribution with

$$E(Y_i) = \mu$$
 and $V(Y_i) = \sigma^2$.

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_0: \sigma^2 = \sigma_0$$
 (upper-tail alternative).
 $H_a: \begin{cases} \sigma^2 > \sigma_0^2 & \text{(upper-tail alternative).} \\ \sigma^2 < \sigma_0^2 & \text{(lower-tail alternative).} \end{cases}$
Test statistic: $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$.

$$H_a$$
: $\sigma^2 < \sigma_0^2$ (lower-tail alternative).

Test statistic:
$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$
.

$$\int_{0}^{\infty} \chi^{2} \times \chi^{2}_{\alpha} \qquad \text{(upper-tail RR)}$$

Test statistic:
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$
.

Rejection region:
$$\begin{cases} \chi^2 > \chi_\alpha^2 & \text{(upper-tail RR).} \\ \chi^2 < \chi_{1-\alpha}^2 & \text{(lower-tail RR).} \\ \chi^2 > \chi_{\alpha/2}^2 & \text{or } \chi^2 < \chi_{1-\alpha/2}^2 & \text{(two-tailed RR).} \end{cases}$$

Notice that
$$\chi_{\alpha}^2$$
 is chosen so that, for $\nu = n - 1$ df, $P(\chi^2 > \chi_{\alpha}^2) = \alpha$. (See Table 6, Appendix 3.)

DEFINITION 10.3

Suppose that W is the test statistic and RR is the rejection region for a test of a hypothesis involving the value of a parameter θ . Then the power of the test, denoted by power(θ), is the probability that the test will lead to rejection of H_0 when the actual parameter value is θ . That is,

power(
$$\theta$$
) = $P(W \text{ in RR when the parameter value is } \theta)$.

Relationship Between Power and β

If θ_a is a value of θ in the alternative hypothesis H_a , then

$$power(\theta_a) = 1 - \beta(\theta_a).$$